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COMPARISON OF THE ROUGH SURFACE REFLECTION COEFFICIENT
WITH SPECULARLY SCATTERED ACOUSTIC DATA

INTRODUCTION

Miller and Vegh [1] in treating reflection from the rough surface of the sea derived a one-
parameter family of curves for the rough surface reflection coefficient or roughness factor R given by

R (g,e) = E2 exp [-2E2 12 (27rg)2 ] I0o2e 2 2 (27rg)2 ]

+ (1- 2 1 12 exp [_4712 (27rg) 2]

2 ( (1- E2) (Dj 3[, 1; 2; E2 - 4e2.2 (27rg)2 1 (1)
2 '2'

where

g= (o-/A) sinkp

and

'71 [1 + 7r (1 - 2) ]-1/2
2

Here g is a measure of the effective surface roughness or simply surface roughness, E(O < e < 1) is
the spectral width parameter, o- is the standard deviation of the water surface elevation, qJ is the grazing
angle for specular reflection, A is the wavelength of the incident radiation, and Io(x) is the modified
Bessel function of order zero. The function D 1 6a, /l; y; x, y ] is a confluent hypergeometric function
in two variables first defined in 1920 by P. Humbert [2, p. 581. In the Appendix we derive an integral
representation for C1 that may be used for numerical computation.

R (g, 0), given by Eq. (1), is essentially the Fourier transform of the probability density D (y, e)
for surface elevation y where

D (Y, E) = 3E exp( Y2 )2 K 2 2
27T 3/ 2?Icr 8E 2782 (2 2 2712 a 2

+ ( /2 exp ( Y2 ) {CosI' e + e (1- E2)1/2 Ke0 (2E2_ 1, y2/8E2 q2a-2 )} (2)

Here Ko(x) is the MacDonald function or Bessel function of imaginary argument of order zero.
K, (a, x) is an incomplete Lipschitz-Hankel integral of Ko(x) and may be written in closed form either
in terms of incomplete cylindrical functions [3] or in various ways in terms of Kamp6 de Feriet func-
tions [4,5]; e.g.

K, (a, z) = z Ko(z) Al (a, z) + z 2 K, (z) A 0 (a, z)

Manuscript approved April 9, 1987.
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where

0: 1; 1
AI (a, z) F2 :0 . 0 I

-: 1/2; 1; a2
z

2

1/2,3/2: -; -; 4 

1 0:2;1 -: 1,1; 1; a2
Z

2 z2

+ 2 az F 2: 1;0 I 1,2: 3/2;-; 4 4 1

AO(a, z) _
0:F I3 -2: 1/2; 1; 2Z2

F 2:0;0 |3 32,3/ 2: -; -; 4 ' 4+1

1 0:2;1 | -: 1, 1; 1; a 2Z2 Z2|

+ 4 az F 21;0 1 2,2: 3/2; -; 4 l4j
D(y, e), given by Eq. (2), was derived in Ref. I by assuming that the water surface could be described
locally by sinusoids with uniform phase distribution whose amplitude distribution is given by a density
function derived by Rice [6] and by Cartwright and Longuet-Higgins [7]. Figure I gives graphs for
D (y, e), for various values of e. IIIII .

6 = 1.0
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Fig. I - Density function D(y, e) for various values
of the spectral width parameter e

COMPARISON OF R (g,E) WITH ACOUSTIC DATA

In 1980 DeSanto [8, p. 70, Fig. 5] compared R (g, 1) with acoustic data from Clay, Medwin, and
Wright [9]. Although R (g, 1) was first derived in 1974 [10], a mathematically rigorous derivation was
not obtained until 1984 [111. In view of Eq. (1), it now appears appropriate to compare R (g, e) with
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the aforementioned data. Whereas R (g, 1) takes into account only the standard deviation, a-, of sur-
face elevation, R (g, e) is dependent on e also and hence on the moments of the frequency energy
spectrum 1 (s) of the surface through the equations [12, p. 3461

E2 (m= m4-m2)/mOm4

MP Jfo svs (s) ds (mO= a-)

Figure 2 compares R 2 (g, 1/3) with the data given by Clay et al. in Fig. 5 of Ref. 9. R2 (g, 1/3)
appears to be in better agreement with this data than the multiple scattering theoretical result given in
Fig. 5 of Ref. 8.

(4Xrg)2

Fig. 2 - Comparison of the theoretical curve R2(g, 1/3)
with experimental data

CONCLUSION

One of the family of rough surface reflection coefficients agrees with acoustic data reasonably
well; at least as well as the curve given previously by the multiple scattering model.
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Appendix

INTEGRAL REPRESENTATIONS FOR 4) [a,13;y;x,yI

The confluent double hypergeometric function D is defined by

q 1 [a, Is; y; x, y] x- A, ( I< m, ! I< !
m~n= (v)1+~ m! n!

The definition of DIl given in Erdelyi et al. [Al, p. 225] and Gradshteyn et al. [A2, 9.261, Eq. 11 is
incorrect.

By using Ref. A3, p. 266

(_)p - ()F (y- a) tP+a-' (1- t)Y-a-I dt, Rey > Rea > 0
with the definition of (I given above we obtain

_r (_) _n+_I (1- t)_-_-_ _ xmy dt'F1Ia,/3,y~x~] F(a) F(y - a) __ 0 t- 1-t Q3 m!n! d

Now interchanging the integral sign and double sum and noting that

____n (tX)m 

nS n! - e', m! - tx)-m

we obtain for Rey > Rea > 0, lxI< 1, yJ<oo

[a, /; y; x,y= I r (y) (l - xt)-) (1 - t)v I t- I dtFrwr (y - a) f
In particular,

DI1 [3/2, 1; 2; x,YI =- 2 ft ci dt
7T ~ _Xt) (1 - 2

Now making the transformation t = sin2 0 and replacing x by e2 andy by - e 2 y2 we obtain

<>1[3/2 1; 2; e2 -e 2 y 2 ] = 4 f -/ 2 sin 2 0 e-Y 2 2s(n2 )
I ' ' I~~~T 0 1 - E2sin2o dOAl

For real e, y the integrand here is nonnegative on the closed interval [0, Ir/2 1 and has no singularities
for 0 < e < 1; the integral in Eq. (Al) is therefore suitable for numerical quadrature and (I may
thereby be computed.
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It may also be shown [1, Eq. 15] that

(lip [3/2, 1; 2; e 2 , -E 2 y 2 ] = 2 eY 2 - 2 f te' 2 Jo(2yt) erf tI : _ I2)I/2 tI dtI

(A2)

from which it follows that

Jim E
2 (1 - e2 ) .$ [3/2, 1; 2; E2 , -E2y 2 ] = 0

, _ I

Hence Eq. (1) is valid in the limit for E = 1.
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